Complete reference for StyleGPT's latest API endpoints
The StyleGPT v4 API provides advanced AI-powered fashion intelligence capabilities including conversational styling, semantic search, vector similarity matching, and AI-generated outfit visualization.
All v4 API endpoints require authentication via Bearer token in the Authorization header.
Authorization: Bearer YOUR_API_KEY
For testing purposes, you can use the demo token:
Authorization: Bearer DEMO
Note: Demo access has reduced rate limits and may have feature restrictions.
Endpoint | Authenticated Users | Demo Users |
---|---|---|
Chat API | 30 requests/minute | 15 requests/minute |
Dataset Search | 100 requests/minute | 50 requests/minute |
Image Generation | 50 requests/minute | 25 requests/minute |
Rate limit headers are included in all authenticated responses:
X-RateLimit-Resource
: The specific API resource being accessed (e.g., "api.v4.chat")X-RateLimit-Quota-Limit
: Monthly quota limit (number or "unlimited")X-RateLimit-Quota-Remaining
: Requests remaining in current monthly quota (number or "unlimited")X-RateLimit-Quota-Reset
: Unix timestamp when monthly quota resets (beginning of next month)X-RateLimit-RPM-Limit
: Requests per minute limitX-RateLimit-RPM-Remaining
: Requests remaining in current minute windowX-RateLimit-RPM-Reset
: Unix timestamp when RPM limit resets (60 seconds from now)Retry-After
: Seconds to wait before retrying (only present when rate limited)The API uses standard HTTP status codes and returns consistent error response format:
{
"error": "Descriptive error message for developers"
}
Endpoint: POST /api/v4/chat
Advanced AI styling assistant with conversational interface and web search capabilities.
{
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Create a business casual outfit"
}
]
}
],
"useAdvancedStyling": true,
"brand": "hugo boss",
"chatId": "optional-chat-session-id"
}
Field | Type | Required | Description |
---|---|---|---|
messages |
Array | Yes | Array of conversation messages |
messages[].role |
String | Yes | Message role: user , assistant , system |
messages[].content |
Array | Yes | Message content parts |
messages[].content[].type |
String | Yes | Content type: text , image_url |
messages[].content[].text |
String | Required for text | Text content |
useAdvancedStyling |
Boolean | No | Enable web search for latest trends (default: false) |
brand |
String | No | Filter results by specific brand |
chatId |
String | No | Session ID for conversation continuity |
{
"responseMessage": "Here's a perfect business casual outfit with a modern twist...",
"functionCall": {
"name": "generateOutfit",
"parameters": {
"descriptions": [
"Men's slim-fit navy cotton chinos",
"Men's light blue cotton dress shirt",
"Men's navy wool blazer"
]
}
},
"personaDescription": "Professional business casual style",
"followUps": [
"Make it more formal",
"Try different colors",
"Add accessories",
"Show summer alternatives"
]
}
// Basic styling request
const response = await fetch('/api/v4/chat', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
},
body: JSON.stringify({
messages: [{
role: 'user',
content: [{
type: 'text',
text: 'I need a formal outfit for a wedding reception'
}]
}],
useAdvancedStyling: true
})
});
const styling = await response.json();
console.log(styling.responseMessage);
// Multi-turn conversation
const response = await fetch('/api/v4/chat', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
},
body: JSON.stringify({
messages: [
{
role: 'user',
content: [{ type: 'text', text: 'Create a casual summer outfit' }]
},
{
role: 'assistant',
content: [{ type: 'text', text: 'Here\'s a great summer look...' }]
},
{
role: 'user',
content: [{ type: 'text', text: 'Make it more colorful' }]
}
],
chatId: 'session-123',
brand: 'zara'
})
});
Endpoint: POST /api/v4/dataset/search/text
Semantic search across fashion dataset using natural language queries.
{
"query": "navy blue cotton dress shirt with modern fit",
"limit": 10,
"filters": {
"metadata.gender": "mens",
"metadata.article_type": "shirt",
"origin.brand": "hugo boss"
}
}
Field | Type | Required | Description |
---|---|---|---|
query |
String | Yes | Natural language search query (max 512 characters) |
limit |
Number | No | Number of results to return (1-100, default: 5) |
filters |
Object | No | MongoDB-style filters for metadata and origin fields |
Filter Path | Description | Example Values |
---|---|---|
metadata.gender |
Target gender | "mens" , "womens" |
metadata.article_type |
Clothing category | "shirt" , "pants" , "dress" , "jacket" |
metadata.primary_colors |
Primary colors | "navy blue" , "black" , "white" |
origin.brand |
Brand name | "hugo boss" , "zara" , "nike" |
origin.url |
Retailer domain | "hugoboss.com" , "zara.com" |
{
"results": [
{
"_id": "507f1f77bcf86cd799439011",
"metadata": {
"article_type": "shirt",
"gender": "mens",
"description": "Navy cotton dress shirt with spread collar",
"primary_colors": ["navy blue", "white"],
"formality": "business_casual",
"patterns": ["solid"]
},
"origin": {
"brand": "Hugo Boss",
"url": "hugoboss.com",
"product_url": "https://hugoboss.com/...",
"image_urls": ["https://images.hugoboss.com/..."]
},
"score": 0.8947,
"embeddings": {}
}
]
}
// Basic text search
const response = await fetch('/api/v4/dataset/search/text', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
},
body: JSON.stringify({
query: 'comfortable athletic sneakers for running',
limit: 5
})
});
const { error, results } = await response.json();
if (error) {
alert(error);
return;
}
results.forEach(item => {
console.log(`${item.metadata.article_type}: ${item.metadata.description}`);
console.log(`Score: ${item.score.toFixed(3)}`);
});
// Advanced filtered search
const response = await fetch('/api/v4/dataset/search/text', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
},
body: JSON.stringify({
query: 'elegant evening dress',
limit: 20,
filters: {
'metadata.gender': 'womens',
'metadata.formality': { '$in': ['formal', 'semi_formal'] },
'metadata.primary_colors': { '$in': ['black', 'navy blue'] },
'origin.brand': { '$in': ['hugo boss', 'zara'] }
}
})
});
Endpoint: POST /api/v4/dataset/search/embedding
Vector similarity search using pre-computed embeddings for advanced ML applications.
{
"embedding": [0.1, -0.2, 0.3, ...],
"limit": 5,
"filters": {
"metadata.gender": "womens",
"origin.brand": "zara"
}
}
Field | Type | Required | Description |
---|---|---|---|
embedding |
Array | Yes | 512-dimensional float array |
limit |
Number | No | Number of results to return (1-100, default: 5) |
filters |
Object | No | MongoDB-style filters (same as text search) |
Same format as text search, with vector similarity scores.
// Vector similarity search
const response = await fetch('/api/v4/dataset/search/embedding', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
},
body: JSON.stringify({
embedding: embeddings.textEmbedding, // From CLIP API
limit: 10,
filters: {
'metadata.article_type': 'dress',
'metadata.gender': 'womens'
}
})
});
const similarItems = await response.json();
Endpoint: POST /api/v4/outfit/image/generate
Generate photorealistic images of models wearing specified clothing items.
{
"imageUrls": [
"https://example.com/white-shirt.jpg",
"https://example.com/navy-blazer.jpg",
"https://example.com/dark-jeans.jpg"
],
"modelDescription": "Professional 28-year-old model, athletic build, confident pose"
}
Field | Type | Required | Description |
---|---|---|---|
imageUrls |
Array | Yes | URLs of clothing item images (1-10 items) |
modelDescription |
String | Yes | Description of desired model appearance (max 500 characters) |
{
"imageData": "..."
}
// Generate outfit visualization
const response = await fetch('/api/v4/outfit/image/generate', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
},
body: JSON.stringify({
imageUrls: [
'https://cdn.shopify.com/white-blouse.jpg',
'https://cdn.shopify.com/black-skirt.jpg',
'https://cdn.shopify.com/heels.jpg'
],
modelDescription: 'Confident professional woman in her 30s, business setting'
})
});
const { imageData } = await response.json();
// Display generated image
const img = document.createElement('img');
img.src = imageData;
document.body.appendChild(img);
// Batch generation for multiple outfits
const outfits = [
{
items: ['shirt1.jpg', 'pants1.jpg'],
model: 'Casual young man, relaxed pose'
},
{
items: ['dress1.jpg', 'jacket1.jpg'],
model: 'Professional woman, confident stance'
}
];
const results = await Promise.all(
outfits.map(outfit =>
fetch('/api/v4/outfit/image/generate', {
method: 'POST',
headers: {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
},
body: JSON.stringify({
imageUrls: outfit.items,
modelDescription: outfit.model
})
}).then(res => res.json())
)
);
Code | Meaning | Description |
---|---|---|
200 |
OK | Request successful |
401 |
Unauthorized | Invalid or missing API key |
403 |
Forbidden | Insufficient subscription permissions |
422 |
Unprocessable Entity | Invalid request parameters |
429 |
Too Many Requests | Rate limit exceeded |
500 |
Internal Server Error | Server error occurred |
// 401 - Invalid API Key
{
"error": "Invalid API key provided"
}
// 403 - Subscription Required
{
"error": "Access denied: Your current subscription does not include access to the Chat API (v4). Please upgrade your plan or contact your administrator."
}
// 422 - Missing Required Field
{
"error": "The 'query' field must be provided as type text."
}
// 422 - Invalid Parameter
{
"error": "The 'embedding' array must contain exactly 512 dimensions."
}
// 422 - Out of Range
{
"error": "Limit must be less than 100."
}
// 429 - Rate Limit Exceeded
{
"error": "Rate limit exceeded. Please try again later.",
"retryAfter": 60
}
// 500 - Internal Server Error
{
"error": "Internal server error"
}
// 500 - Service Unavailable
{
"error": "There was an unexpected error processing your request. Please try again."
}
const axios = require('axios');
class StyleGPTClient {
constructor(apiKey, baseURL = 'https://stylegpt.ai') {
this.apiKey = apiKey;
this.baseURL = baseURL;
this.client = axios.create({
baseURL: this.baseURL,
headers: {
'Authorization': `Bearer ${this.apiKey}`,
'Content-Type': 'application/json'
}
});
}
async chat(messages, options = {}) {
const response = await this.client.post('/api/v4/chat', {
messages,
...options
});
return response.data;
}
async searchText(query, options = {}) {
const response = await this.client.post('/api/v4/dataset/search/text', {
query,
...options
});
return response.data;
}
async searchEmbedding(embedding, options = {}) {
const response = await this.client.post('/api/v4/dataset/search/embedding', {
embedding,
...options
});
return response.data;
}
async generateOutfitImage(imageUrls, modelDescription) {
const response = await this.client.post('/api/v4/outfit/image/generate', {
imageUrls,
modelDescription
});
return response.data;
}
}
// Usage
const client = new StyleGPTClient('your-api-key');
// Chat example
const styling = await client.chat([{
role: 'user',
content: [{ type: 'text', text: 'Create a summer outfit' }]
}], { useAdvancedStyling: true });
// Search example
const results = await client.searchText('red dress', {
limit: 10,
filters: { 'metadata.gender': 'womens' }
});
import requests
import json
class StyleGPTClient:
def __init__(self, api_key, base_url="https://stylegpt.ai"):
self.api_key = api_key
self.base_url = base_url
self.headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
def chat(self, messages, **kwargs):
response = requests.post(
f"{self.base_url}/api/v4/chat",
headers=self.headers,
json={"messages": messages, **kwargs}
)
return response.json()
def search_text(self, query, **kwargs):
response = requests.post(
f"{self.base_url}/api/v4/dataset/search/text",
headers=self.headers,
json={"query": query, **kwargs}
)
return response.json()
def search_embedding(self, embedding, **kwargs):
response = requests.post(
f"{self.base_url}/api/v4/dataset/search/embedding",
headers=self.headers,
json={"embedding": embedding, **kwargs}
)
return response.json()
def generate_outfit_image(self, image_urls, model_description):
response = requests.post(
f"{self.base_url}/api/v4/outfit/image/generate",
headers=self.headers,
json={
"imageUrls": image_urls,
"modelDescription": model_description
}
)
return response.json()
# Usage
client = StyleGPTClient("your-api-key")
# Chat example
result = client.chat([{
"role": "user",
"content": [{"type": "text", "text": "Professional outfit"}]
}], useAdvancedStyling=True)
# Search example
items = client.search_text("blue jeans", limit=5)
// Comprehensive error handling
async function searchWithRetry(client, query, maxRetries = 3) {
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
const results = await client.searchText(query);
return results;
} catch (error) {
if (error.response) {
const { status, data } = error.response;
switch (status) {
case 401:
throw new Error('Authentication failed. Check your API key.');
case 403:
throw new Error('Subscription required. Upgrade your plan.');
case 422:
throw new Error(`Invalid request: ${data.error}`);
case 429:
if (attempt < maxRetries) {
const delay = data.retryAfter || 60;
console.log(`Rate limited. Retrying in ${delay} seconds...`);
await new Promise(resolve => setTimeout(resolve, delay * 1000));
continue;
}
throw new Error('Rate limit exceeded. Try again later.');
case 500:
if (attempt < maxRetries) {
console.log(`Server error. Retrying attempt ${attempt}...`);
await new Promise(resolve => setTimeout(resolve, 1000 * attempt));
continue;
}
throw new Error('Server error. Please contact support.');
default:
throw new Error(`Unexpected error: ${data.error}`);
}
}
throw error;
}
}
}
For questions or issues, please contact our support team or check our comprehensive guides at docs.stylegpt.ai.
Test our APIs in the interactive playground or generate your API keys.