Complete reference for StyleGPT's latest API endpoints
The StyleGPT REST API v1 provides endpoints for AI-powered fashion styling, outfit generation, dataset management, search functionality, and asset generation. This API follows RESTful principles and supports JSON request/response formats.
https://api.stylegpt.com/api/v1
All API endpoints require authentication via API keys. Include your API key in the request headers:
Authorization: Bearer YOUR_API_KEY
The API implements different rate limits based on your subscription tier:
Generate AI-powered outfit suggestions and styling advice using Stylor's fashion intelligence.
Features:
{
"messages": [
{
"role": "user",
"content": [
{
"type": "input_text",
"text": "I need a professional outfit for a business meeting"
}
]
}
],
"datasetIds": ["optional-dataset-id"],
"chatId": "optional-chat-id",
"brand": "optional-brand-filter",
"useAdvancedStyling": false
}
Parameter | Type | Required | Description |
---|---|---|---|
messages |
Array | Yes | Array of conversation messages. Must contain at least one valid message. |
messages[].role |
String | Yes | Message role: "user" or "assistant" . Other roles are not accepted. |
messages[].content |
Array / String | Yes | Array of content objects, or a string (will be wrapped as input_text ). |
messages[].content[].type |
String | Conditional | One of "input_text" , "output_text" , or "refusal" . Other types are ignored with a warning. |
messages[].content[].text |
String | Conditional | Required if type is "input_text" , "output_text" , or "refusal" . |
datasetIds |
Array<String> | No | Dataset IDs to use. If omitted, the active dataset is used. Draft/archived datasets are allowed but return warnings. |
chatId |
String | No | Optional chat session identifier for conversation tracking. |
brand |
String | No | Filter results by a specific brand in the dataset. |
useAdvancedStyling |
Boolean | No | Enable web search for current trends (Enterprise only, default: false). |
{
"message": "I'll help you create a professional business meeting outfit! Based on current inventory, here's a polished look:",
"functionCall": {
"name": "generateOutfit",
"arguments": {
"descriptions": [
"Men's slim-fit navy wool suit jacket",
"Men's slim-fit navy wool suit trousers",
"Men's white cotton dress shirt",
"Men's silk navy tie",
"Men's black leather oxford shoes"
]
}
},
"persona": "Professional business attire for corporate meetings",
"followUps": [
"Make it more casual",
"Try different colors",
"Add accessories",
"Show alternative options"
],
"lang": "en",
"warnings": [
"Dataset \\"abc123\\" is in draft mode and may not contain complete or production-ready data.",
"Message 0 content item 2 has unsupported type 'image_url' and was ignored."
]
}
Notes:
warnings
is optional and included only if there were issues with dataset status or ignored/invalid message content.functionCall.arguments
is always parsed as an object. If no call is needed, functionCall
will contain name: ""
and arguments: {}
.Status | Description |
---|---|
400 | Missing or invalid organizationId in request context, invalid datasetIds format, or invalid request sent to AI service. |
422 | Invalid messages array or structure (e.g., missing role /content , invalid content type, non-array datasetIds ). |
404 | No active datasets found (when none provided) OR brand inventory data not found for selected datasets. |
429 | AI service rate limit exceeded. |
500 | Internal server error. |
502 | AI service temporarily unavailable, authentication failure, invalid AI response format, or unparsable AI JSON. |
503 | Service temporarily unavailable due to backend connection or database issue. |
504 | Request to AI service or backend timed out. |
Generate high-resolution, full-body outfit images using Google's Gemini 2.0 Flash model for image generation.
Availability: DEMO tier (20 rpm) and Enterprise tier (1,000 rpm) only.
{
"imageUrls": [
"https://example.com/shirt.jpg",
"https://example.com/pants.jpg",
"https://example.com/shoes.jpg"
],
"modelDescription": "25-year-old professional woman, 5'7\", athletic build, standing confidently"
}
Parameter | Type | Required | Description |
---|---|---|---|
imageUrls |
Array | Yes | Array of clothing item image URLs (max 10 items) |
modelDescription |
String | Yes | Physical description of the model (max 500 characters) |
{
"imageData": "..."
}
Status | Description |
---|---|
422 | Invalid parameters (empty array, >10 images, >500 char description, invalid URLs, image fetch errors) |
500 | Image generation failed or processing error |
Search clothing datasets using natural language text queries with CLIP multimodal embeddings for semantic similarity matching.
{
"query": "blue denim jacket for women",
"filters": {
"metadata.gender": "Female",
"metadata.articleType": "Jacket"
},
"limit": 10
}
Parameter | Type | Required | Description |
---|---|---|---|
query |
String | Yes | Search query (max 512 characters) |
filters |
Object | No | MongoDB-style filters for results |
limit |
Number | No | Number of results to return (1-100, default: 5) |
{
"results": [
{
"_id": "507f1f77bcf86cd799439011",
"productId": "PROD123",
"variantId": "VAR456",
"metadata": {
"gender": "Female",
"fit": "regular fit",
"description": {
"concise": "Women's classic denim jacket",
"detailed": "A timeless denim jacket crafted from premium cotton with button closure",
"keyword": "denim jacket"
},
"articleType": "Jacket",
"formality": "casual",
"pattern": "solid"
},
"product": {
"sku": "DJ001-BLUE-M",
"color": {
"name": "Blue",
"rgbValue": [70, 130, 180]
},
"url": "https://retailer.com/products/denim-jacket",
"name": "Classic Denim Jacket",
"description": "Premium cotton denim jacket with vintage styling",
"careInstructions": "Machine wash cold, tumble dry low",
"price": 89.99,
"currency": "USD",
"images": [
{
"_id": "img_001",
"originalImageUrl": "https://retailer.com/jacket-front.jpg",
"type": "Model",
"uploaded": {
"id": "upload_123",
"url": "https://cdn.stylegpt.com/images/jacket-front.jpg"
}
}
],
"sizes": [
{
"_id": "size_001",
"inStock": true,
"inventoryQuantity": "12",
"price": 89.99,
"label": "Medium",
"sku": "DJ001-BLUE-M"
}
]
},
"origin": {
"siteUrl": "https://retailer.com",
"brandId": "brand_123",
"brand": "Fashion Brand",
"country": "US"
},
"score": 0.92,
"embeddings": {},
"createdAt": "2024-01-15T10:30:00.000Z",
"updatedAt": "2024-01-15T10:30:00.000Z"
}
]
}
Search clothing datasets using pre-computed 512-dimensional embedding vectors from CLIP model for precise semantic matching.
{
"embedding": [0.1, 0.2, -0.3, ..., 0.8],
"filters": {
"metadata.articleType": "Dress",
"metadata.gender": "Female"
},
"limit": 5
}
Parameter | Type | Required | Description |
---|---|---|---|
embedding |
Array | Yes | Exactly 512-dimensional embedding vector (CLIP multimodal) |
filters |
Object | No | MongoDB-style filters for results |
limit |
Number | No | Number of results to return (1-100, default: 5) |
Same structure as text search response, with results ordered by vector similarity score.
Status | Description |
---|---|
422 | Invalid query/embedding parameters (wrong dimensions, invalid filters, limit out of range) |
500 | Database error or embedding processing failed |
Availability: Starter (60 rpm), Pro (100 rpm), and Enterprise (200 rpm) plans only.
Create a new clothing dataset for organizing and managing fashion items within your organization.
{
"name": "Summer Collection 2024",
"description": "Lightweight clothing items for summer season"
}
Parameter | Type | Required | Description |
---|---|---|---|
name |
String | Yes | Dataset name (required, non-empty after trimming) |
description |
String | No | Optional dataset description |
{
"datasetId": "550e8400-e29b-41d4-a716-446655440000"
}
List all datasets for your organization with pagination support.
Parameter | Type | Default | Description |
---|---|---|---|
page |
Number | 1 | Page number (1-based, positive integer) |
limit |
Number | 50 | Items per page (1-200, default: 50) |
{
"datasets": [
{
"datasetId": "550e8400-e29b-41d4-a716-446655440000",
"status": "active",
"name": "Summer Collection 2024",
"description": "Lightweight clothing items for summer season",
"createdAt": "2024-01-15T10:30:00.000Z",
"updatedAt": "2024-01-15T10:30:00.000Z"
}
],
"pagination": {
"page": 1,
"limit": 50,
"total": 1,
"hasMore": false
}
}
Retrieve details of a specific dataset.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Unique dataset identifier (UUID) |
{
"dataset": {
"datasetId": "550e8400-e29b-41d4-a716-446655440000",
"status": "active",
"name": "Summer Collection 2024",
"description": "Lightweight clothing items for summer season",
"createdAt": "2024-01-15T10:30:00.000Z",
"updatedAt": "2024-01-15T10:30:00.000Z"
}
}
Delete a dataset and all its associated items permanently.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Unique dataset identifier (UUID) |
{
"message": "Dataset successfully deleted",
"deletedId": "550e8400-e29b-41d4-a716-446655440000"
}
Change dataset status from 'draft' or 'archived' to 'active' to make it available for search operations.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Unique dataset identifier (UUID) |
{
"datasetId": "550e8400-e29b-41d4-a716-446655440000",
"status": "active",
"updatedAt": "2024-01-15T10:35:00.000Z"
}
Change dataset status to 'archived' to temporarily remove from search operations while preserving data.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Unique dataset identifier (UUID) |
{
"datasetId": "550e8400-e29b-41d4-a716-446655440000",
"status": "archived",
"updatedAt": "2024-01-15T10:35:00.000Z"
}
Upload clothing items to a specific dataset. Items are queued for processing with embedding generation and validation.
Upload Limits: Maximum 5,000 items per request.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Target dataset identifier (UUID) |
{
"items": [
{
"name": "Summer Floral Dress",
"handle": "summer-floral-dress",
"description": "Light and airy floral dress perfect for summer occasions",
"publishedAt": "2024-01-15T09:00:00.000Z",
"createdAt": "2024-01-15T08:30:00.000Z",
"updatedAt": "2024-01-15T08:30:00.000Z",
"productType": "Dress",
"sku": "SFD001",
"price": 79.99,
"tags": ["summer", "floral", "casual", "feminine"],
"variants": [
{
"sku": "SFD001-S",
"name": "Summer Floral Dress - Small",
"available": true,
"price": 79.99,
"createdAt": "2024-01-15T08:30:00.000Z",
"updatedAt": "2024-01-15T08:30:00.000Z",
"productId": "SFD001"
}
],
"images": [
{
"src": "https://example.com/dress-front.jpg"
},
{
"src": "https://example.com/dress-back.jpg"
}
],
"options": [
{
"name": "Size",
"values": ["Small", "Medium", "Large", "XL"]
},
{
"name": "Color",
"values": ["Floral Print"]
}
]
}
]
}
Field | Type | Required | Description |
---|---|---|---|
name |
String | Yes | Product name |
handle |
String | Yes | URL-friendly product identifier |
description |
String | Yes | Product description |
publishedAt |
String | Yes | ISO 8601 date string |
createdAt |
String | Yes | ISO 8601 date string |
updatedAt |
String | Yes | ISO 8601 date string |
productType |
String | Yes | Category/type of product |
sku |
String | Yes | Unique product SKU |
price |
Number | Yes | Product price (non-negative) |
tags |
Array | Yes | Array of tag strings |
variants |
Array | Yes | Array of product variant objects |
images |
Array | Yes | Array of image objects with src property |
options |
Array | Yes | Array of option objects with name and values |
{
"success": true,
"uploaded": 1,
"warnings": [
{
"index": 0,
"path": "description",
"message": "Description could be more detailed"
}
]
}
{
"error": "Validation failed.",
"details": [
{
"index": 0,
"path": "price",
"message": "Price must be a non-negative number."
},
{
"index": 0,
"path": "variants[0].sku",
"message": "Expected string."
}
]
}
List all processed items in a specific dataset with pagination.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Dataset identifier (UUID) |
Parameter | Type | Default | Description |
---|---|---|---|
page |
Number | 1 | Page number (1-based) |
limit |
Number | 50 | Items per page (1-200) |
{
"items": [
{
"organizationId": "org_123",
"datasetId": "550e8400-e29b-41d4-a716-446655440000",
"itemId": "item_456",
"metadata": {
"gender": "Female",
"fit": "regular fit",
"description": {
"concise": "Women's summer dress",
"detailed": "Light and airy floral dress perfect for summer",
"keyword": "summer dress"
},
"articleType": "Dress",
"formality": "casual",
"pattern": "floral"
},
"product": {
"sku": "SFD001",
"color": {
"name": "Floral Print"
},
"url": "https://retailer.com/summer-dress",
"name": "Summer Floral Dress",
"description": "Light and airy floral dress",
"careInstructions": "Machine wash cold",
"price": 79.99,
"currency": "USD",
"images": [],
"sizes": []
},
"origin": {
"siteUrl": "https://retailer.com",
"brandId": "brand_123",
"brand": "Fashion Brand",
"country": "US"
},
"createdAt": "2024-01-15T10:30:00.000Z",
"updatedAt": "2024-01-15T10:30:00.000Z"
}
],
"pagination": {
"page": 1,
"limit": 50,
"total": 1,
"hasMore": false
}
}
Retrieve details of a specific processed item within a dataset.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Dataset identifier (UUID) |
itemId |
String | Item identifier |
Returns the same item structure as shown in the list items response, but for a single item.
Delete a specific processed item from a dataset permanently.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Dataset identifier (UUID) |
itemId |
String | Item identifier |
{
"message": "Item successfully deleted",
"deletedId": "item_456"
}
List items currently being processed in the upload queue for a dataset.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Dataset identifier (UUID) |
Parameter | Type | Default | Description |
---|---|---|---|
page |
Number | 1 | Page number (1-based) |
limit |
Number | 50 | Items per page (1-200) |
{
"items": [
{
"itemId": "queue_789",
"organizationId": "org_123",
"datasetId": "550e8400-e29b-41d4-a716-446655440000",
"status": "pending",
"data": {
"name": "Summer Floral Dress",
"handle": "summer-floral-dress",
"description": "Light and airy floral dress",
"sku": "SFD001",
"price": 79.99,
"variants": [],
"images": [],
"options": []
},
"createdAt": "2024-01-15T10:30:00.000Z",
"updatedAt": "2024-01-15T10:30:00.000Z"
}
],
"pagination": {
"page": 1,
"limit": 50,
"total": 1,
"hasMore": false
}
}
Status | Description |
---|---|
pending |
Item is queued for processing |
complete |
Item has been processed successfully |
failed |
Item processing failed |
Retrieve status and details of a specific queued item.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Dataset identifier (UUID) |
itemId |
String | Queued item identifier |
Returns the same queued item structure as shown in the queue list response.
Cancel/delete a queued item that hasn't completed processing.
Parameter | Type | Description |
---|---|---|
datasetId |
String | Dataset identifier (UUID) |
itemId |
String | Queued item identifier |
{
"message": "Queued item successfully cancelled",
"cancelledId": "queue_789"
}
Status | Description |
---|---|
draft |
Dataset is created but not active for search |
active |
Dataset is live and available for search operations |
archived |
Dataset is temporarily disabled but data preserved |
All endpoints return standard HTTP status codes and JSON error responses:
{
"error": "Error message description"
}
Code | Description |
---|---|
200 | Success |
400 | Bad Request - Invalid request format |
401 | Unauthorized - Invalid or missing API key |
403 | Forbidden - Insufficient permissions for subscription tier |
404 | Not Found - Resource doesn't exist or organization/dataset not found |
422 | Unprocessable Entity - Invalid parameters or validation failed |
429 | Too Many Requests - Rate limit exceeded |
500 | Internal Server Error - Server-side error |
502 | Bad Gateway - External service error (AI providers) |
503 | Service Unavailable - Temporary service issues |
504 | Gateway Timeout - Request timeout |
All API responses include rate limiting information in the headers:
X-RateLimit-Limit: 60
X-RateLimit-Remaining: 59
X-RateLimit-Reset: 1642685400
X-RateLimit-Quota: 1000
X-RateLimit-Quota-Remaining: 999
const response = await fetch('https://api.stylegpt.com/api/v1/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer YOUR_API_KEY'
},
body: JSON.stringify({
messages: [{
role: 'user',
content: [{
type: 'text',
text: 'I need a casual outfit for weekend brunch'
}]
}],
useAdvancedStyling: false
})
});
const data = await response.json();
console.log(data.responseMessage);
if (data.functionCall?.name === 'generateOutfit') {
console.log('Suggested items:', data.functionCall.parameters.descriptions);
}
const searchResponse = await fetch('https://api.stylegpt.com/api/v1/search/text', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer YOUR_API_KEY'
},
body: JSON.stringify({
query: 'comfortable running shoes for women',
filters: {
'metadata.gender': 'Female',
'metadata.articleType': 'Shoes'
},
limit: 10
})
});
const searchData = await searchResponse.json();
searchData.results.forEach(item => {
console.log(`${item.product.name} - $${item.product.price} (Score: ${item.score})`);
});
// Create dataset
const datasetResponse = await fetch('https://api.stylegpt.com/api/v1/datasets', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer YOUR_API_KEY'
},
body: JSON.stringify({
name: 'My Fashion Collection',
description: 'Custom clothing items for my store'
})
});
const { datasetId } = await datasetResponse.json();
// Upload items to dataset
const uploadResponse = await fetch(`https://api.stylegpt.com/api/v1/datasets/${datasetId}/items/upload`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer YOUR_API_KEY'
},
body: JSON.stringify({
items: [{
name: 'Classic White T-Shirt',
handle: 'classic-white-tshirt',
description: 'Premium cotton basic tee perfect for layering',
publishedAt: new Date().toISOString(),
createdAt: new Date().toISOString(),
updatedAt: new Date().toISOString(),
productType: 'T-Shirt',
sku: 'CWT001',
price: 29.99,
tags: ['basic', 'cotton', 'white', 'casual'],
variants: [{
sku: 'CWT001-M',
name: 'Classic White T-Shirt - Medium',
available: true,
price: 29.99,
createdAt: new Date().toISOString(),
updatedAt: new Date().toISOString(),
productId: 'CWT001'
}],
images: [{
src: 'https://example.com/tshirt-front.jpg'
}],
options: [{
name: 'Size',
values: ['XS', 'S', 'M', 'L', 'XL']
}]
}]
})
});
const uploadData = await uploadResponse.json();
console.log(`Uploaded ${uploadData.uploaded} items successfully`);
API Key Security: Never expose API keys in client-side code. Always use server-side proxy endpoints.
Rate Limiting: Implement exponential backoff when receiving 429 responses.
Error Handling: Always check response status codes and handle errors gracefully.
Pagination: Use pagination for large datasets to improve performance and reduce memory usage.
Data Validation: Validate data structures before sending requests to avoid 422 validation errors.
Date Formats: Always use ISO 8601 date strings (e.g., "2024-01-15T10:30:00.000Z").
SKU Uniqueness: Ensure SKUs are unique within your organization to prevent upload conflicts.
Image URLs: Ensure image URLs are publicly accessible and use HTTPS.
Embedding Search: Use text search for natural language queries; use embedding search only when you have pre-computed vectors.
Queue Monitoring: Monitor the queue status when uploading large batches of items.
For API support, documentation updates, or technical assistance:
StyleGPT REST API v1 Documentation - Last updated: January 2025
Test our APIs in the interactive playground or generate your API keys.